« Nombre harshad » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Anne Bauval (discuter | contributions)
m +trivialité pour alléger 10 (nombre)
Robert FERREOL (discuter | contributions)
 
(25 versions intermédiaires par 13 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
En [[mathématiques récréatives]], un '''nombre Harshad''', ou '''nombre de Niven''', ou '''nombre multinumérique''' est un [[entier naturel]] qui est [[diviseur|divisible]] par la [[Somme (arithmétique)|somme]] de ses chiffres dans une [[système de numération|base]] donnée. Le nom de ''Harshad'' leur a été donné par le mathématicien [[Dattatreya Ramachandra Kaprekar]] et signifie en [[sanskrit]] ''grande joie''. Le terme Niven est un hommage au mathématicien [[Ivan Niven]] qui a publié un article et présenté une conférence en [[théorie des nombres]] sur leur sujet en 1977. En base ''b'', tous les nombres compris strictement entre zéro et ''b''<ref>Soit tous les [[chiffre]]s de la base sauf zéro.</ref> sont des nombres Harshad (car divisibles par eux-mêmes) et toutes les [[Puissance d'un nombre#Puissance à exposant entier positif|puissances]] de ''b'' aussi (car divisibles par 1).
En [[mathématiques récréatives]], un '''nombre harshad''', ou '''nombre de Niven''', est un [[entier naturel]] qui est [[diviseur|divisible]] par la [[Somme (arithmétique)|somme]] de ses chiffres dans une [[système de numération|base]] donnée. En [[Base (numération)|base]] ''b'', tous les nombres de [[zéro|0]] à ''b'' et toutes les [[Puissance d'un nombre#Puissance à exposant entier positif|puissances]] de ''b'' sont des nombres harshad, mais ils suivent ensuite une répartition similaire à celle des nombres premiers.


== Historique ==
== Nombre Harshad en base 10 ==
Ils semblerait que ces nombres aient été considérés pour la première fois par le mathématicien indien [[Dattatreya Ramachandra Kaprekar|D. R. Kaprekar]] dans un texte de 1955 sous le nom de "multidigital numbers" <ref name=":0">{{Article|langue=en|auteur1=D. R. Kaprekar|titre=Multidigital Numbers|périodique=Scripta Mathematica|volume=21|date=1955|pages=27}}</ref> . L'appellation ''harshad'', qui signifie ''grande joie'' en [[sanskrit]], leur a été donnée par la suite. L'appellation « de Niven » est un hommage au mathématicien [[Ivan Niven]] qui a publié un article et présenté une conférence en [[théorie des nombres]] sur leur sujet en 1977.
{{Section à sourcer|date=juillet 2023}}
.


== Nombre harshad en [[base dix]] ==
Les trente premiers nombres Harshad avec plus d'un chiffre en [[Système décimal|base 10]] sont ({{OEIS|id=A005349}}) :
En base dix, les vingt premiers nombres harshad strictement supérieurs à [[10 (nombre)|10]] sont ({{OEIS|id=A005349}}) :


<center>[[10 (nombre)|10]], [[12 (nombre)|12]], [[18 (nombre)|18]], [[20 (nombre)|20]], [[21 (nombre)|21]], [[24 (nombre)|24]], [[27 (nombre)|27]], [[30 (nombre)|30]], [[36 (nombre)|36]], [[40 (nombre)|40]], [[42 (nombre)|42]], [[45 (nombre)|45]], [[48 (nombre)|48]], [[50 (nombre)|50]], [[54 (nombre)|54]], [[60 (nombre)|60]], [[63 (nombre)|63]], [[70 (nombre)|70]], [[72 (nombre)|72]], [[80 (nombre)|80]], [[81 (nombre)|81]], [[84 (nombre)|84]], [[90 (nombre)|90]], [[100 (nombre)|100]], [[102 (nombre)|102]], [[108 (nombre)|108]], [[110 (nombre)|110]], [[111 (nombre)|111]], [[112 (nombre)|112]].</center>
<center>[[12 (nombre)|12]], [[18 (nombre)|18]], [[20 (nombre)|20]], [[21 (nombre)|21]], [[24 (nombre)|24]], [[27 (nombre)|27]], [[30 (nombre)|30]], [[36 (nombre)|36]], [[40 (nombre)|40]], [[42 (nombre)|42]], [[45 (nombre)|45]], [[48 (nombre)|48]], [[50 (nombre)|50]], [[54 (nombre)|54]], [[60 (nombre)|60]], [[63 (nombre)|63]], [[70 (nombre)|70]], [[72 (nombre)|72]], [[80 (nombre)|80]] et [[81 (nombre)|81]].</center>


Les quotients obtenus se trouvent dans la suite {{OEIS2C|id=A113315}} de l'OEIS.
=== Quels nombres peuvent être des nombres Harshad ? ===


=== Quels nombres peuvent être des nombres harshad ? ===
En prenant le [[Liste de critères de divisibilité|test de divisibilité]] pour le [[9 (nombre)|nombre 9]], on pourrait être tenté de généraliser que tous les nombres divisibles par 9 sont aussi des nombres Harshad. Mais pour déterminer si ''n'' est Harshad, les chiffres de ''n'' ne peuvent être additionnés qu'une fois et ''n'' doit être divisible par cette somme ; sinon, ce n'est pas un nombre Harshad. Par exemple, [[99 (nombre)|99]], n'est pas un nombre de Harshad, puisque 9 + 9 = 18 et 99 n'est pas divisible par 18.


Un [[nombre premier]] ''p'' est un nombre Harshad seulement s'il est inférieur à 10. En effet, dans le cas contraire, la somme de ses chiffres donne un nombre strictement plus grand que 1 et strictement plus petit que ''p'' donc un nombre qui ne peut pas diviser ''p''.
Les multiples de 9 à deux chiffres jusqu90 sont des nombres harshad puisque la somme de leurs chiffres est égale à 9, mais [[99 (nombre)|99]] n'en est pas un, puisque 9 + 9 = 18 et 99 n'est pas divisible par 18.


Aucun nombre premier ''p'' strictement supérieur à 10 n'est harshad. En effet, la somme de ses chiffres est strictement comprise entre 1 et ''p'' donc ne peut pas diviser ''p''.
En base 10, les [[factorielle]]s des nombres entiers inférieurs à 431 sont des nombres Harshad. Le nombre 432! est la première factorielle à ne pas être un nombre Harshad. En voici quelques autres : 444!, 453!, 458!, 474!, 476!, 485!, 489!


En base dix, les [[factorielle]]s des nombres entiers inférieurs ou égaux à 431 sont des nombres harshad. Le nombre 432! est la première factorielle à ne pas être un nombre harshad<ref> {{ouvrage|langue=en|auteur=Richard Mollin|titre=Number Theory|sous-titre=Proceedings of the First Conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, April 17–27, 1988|édition=Waltre de Gruyter|année=1990|présentation en ligne=https://books.google.fr/books?id=xZVsDwAAQBAJ}}, p=630</ref>. En voici quelques autres : 444!, 453!, 458!, 474!, 476!, 485!, 489!.
=== Nombres Harshad consécutifs ===


=== Tout entier > 0 est-il la somme des chiffres d'un nombre harshad ? ===
{{Lien|Helen G. Grundman}} a démontré<ref>{{Article|lang=en|prénom=H. G.|nom=Grundman|titre=Sequences of consecutive Niven numbers|lien périodique=Fibonacci Quarterly|revue=Fibonacci Quart.|volume=32|year=1994|p.=174-175|url=http://www.fq.math.ca/Scanned/32-2/grundman.pdf}}.</ref> qu'en base 10, il n'existe pas 21 entiers consécutifs qui sont tous des nombres Harshad. Elle trouva aussi la plus petite suite de 20 entiers consécutifs qui sont tous des nombres Harshad ; ils dépassent 10<sup>{{formatnum:44363342786}}</sup>.
Dans son article<ref name=":0" />, Kaprekar semble admettre cette propriété comme évidente. Elle est en effet exacte, et démontrée par exemple dans<ref>{{Ouvrage|auteur1=Mohammed Aassila|titre=1000 challenges mathématiques, Algèbre|passage=110|éditeur=Ellipses|date=2016}}</ref> en utilisant le [[Théorème d'Euler (arithmétique)|théorème d'Euler]].


Voici quelques couples <math>(n,h_n)</math> où <math>h_n</math> est le plus petit harshad ayant <math>n</math> pour somme des chiffres :
=== Estimation de la densité des nombres Harshad ===


<math>(10,190);(11,209=11\times19);(12,48=12\times 4);(13,247=13\times19);(14,266=14\times19)</math>
Si l'on note ''N''(''x'') le nombre de nombres Harshad inférieurs ou égaux à ''x'', alors<ref>{{Article|lang=en|lien auteur1=Jean-Marie De Koninck|prénom1=Jean-Marie|nom1=De Koninck|prénom2=Nicolas|nom2=Doyon|nom3={{Lien|lang=hu|trad=Kátai Imre|Imre Katái}}|titre=On the counting function for the Niven numbers|revue=[[Liste des journaux scientifiques en mathématiques#A|Acta Arith.]]|volume=106|issue=3|year=2003|p.=265-275|doi=10.4064/aa106-3-5}}.</ref>


La suite <math>(h_n)</math> est la {{OEIS|A002998}}.
<center><math>\lim_{x\to+\infty}N(x)\frac{\ln x}x=\frac{14}{27}\ln 10\simeq 1,1939.</math></center>


=== Nombres harshad consécutifs ===
== Nombre Harshad dans d'autres bases ==
Cooper et Kennedy ont démontré<ref>{{Article|lang=en|auteur=Curtis Cooper|auteur2=Robert E. Kennedy|titre=On consecutive Niven numbers|revue=[[Fibonacci Quarterly|Fibonacci Quart.]]|vol=31|numéro=2|année=1993|p.=146-151|zbl=0776.11003|url=http://www.fq.math.ca/Scanned/31-2/cooper.pdf}}.</ref>{{,}}<ref>{{Article|lang=en|auteur=[[Helen G. Grundman]]|titre=Sequences of consecutive Niven numbers|revue=Fibonacci Quart.|volume=32|année=1994|p.=174-175|url=http://www.fq.math.ca/Scanned/32-2/grundman.pdf}}.</ref> qu'en base dix, il existe 20 entiers consécutifs (dépassant 10<sup>{{formatnum:44363342786}}</sup>) qui sont tous des nombres harshad, mais qu'il n'en existe pas 21.


=== Estimation de la densité des nombres harshad ===
Un nombre Harshad en base ''b'' est souvent appelé un nombre de ''b''-Harshad (notation de {{Harvsp|Grundman|1994}}).


Si l'on note <math>N(x)</math> le nombre de nombres harshad inférieurs ou égaux à <math>x</math>, alors<ref>{{Article|langue=en|auteur1=Jean-Marie De Koninck, Nicolas Doyon et Imre Katái |titre=On the counting function for the Niven numbers|périodique=Acta Arithmetica|volume=106|numéro=3|date=2003|doi=10.4064/aa106-3-5|lire en ligne=https://www.impan.pl/download/pdf/aa106-3-5|pages= 265-275}}</ref>
=== Répartition des nombres ''b''-Harshad ===
Tous les entiers inférieurs ou égaux à ''b'' sont des nombres ''b''-Harshad. Les seuls nombres premiers ''b''-Harshad sont les nombres premiers inférieurs ou égaux à ''b''.


<center><math>\lim_{x\to+\infty}N(x)\frac{\ln(x)}x=\frac{14}{27}\ln(10)\simeq 1{,}1939.</math></center>Cette constante est répertoriée comme {{OEIS|A086705}}.
En [[Système binaire|base 2]], il existe une infinité de suites de quatre nombres Harshad consécutifs, alors qu'en [[Système ternaire|base 3]], il existe une infinité de suites de six nombres Harshad consécutifs ; ces résultats ont été prouvés tous les deux par {{Lien|T. Tony Cai}} en 1996.


Par conséquent, <math>\lim_{x\to+\infty}\frac{N(x)}x=0</math> : les nombres harshad sont de [[densité asymptotique]] nulle.
=== Nombre Harshad complet ===


== Nombre harshad dans d'autres bases ==
Un nombre qui est un nombre Harshad dans toute base est appelé un nombre Harshad complet, ou un nombre de Niven complet ; il existe seulement quatre nombres Harshad complets, [[1 (nombre)|1]], [[2 (nombre)|2]], [[4 (nombre)|4]] et [[6 (nombre)|6]].

Un nombre harshad en base ''b'' est souvent appelé un nombre ''b''-harshad (notation de {{Harvsp|Grundman|1994}}).

En base ''b'' comme en base dix, on a :
*tous les entiers de 0 jusqu'à ''b'' sont des nombres ''b''-harshad ;
*aucun nombre premier strictement supérieur à ''b'' n'est ''b''-harshad ;
*il existe une infinité de suites de 2''b'' nombres ''b''-harshad consécutifs, pour [[Système binaire|''b'' = 2]] et pour [[Système ternaire|''b'' = 3]] (ces deux résultats ont été prouvés par {{Lien|T. Tony Cai}} en 1996).
*Il existe une constante <math>\eta_b</math> telle que <math>N_b(x)\sim\eta_b\frac x{\ln x}</math> (<math>\eta_{10}=\frac{14}{27}\ln(10)</math>)<ref>{{Article|auteur1=Nicolas Doyon|titre=Les fascinants nombres de Niven|périodique=Thèse de la faculté des sciences et de génie de l'université Laval, Québec|date=Novembre 2006|lire en ligne=https://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/QQLA/TC-QQLA-24023.pdf}}</ref>.

== Nombre complètement harshad ==
Un entier qui est un nombre harshad dans toute base est dit complètement harshad (ou complètement de Niven) ; il existe seulement quatre nombres complètement harshad, [[1 (nombre)|1]], [[2 (nombre)|2]], [[4 (nombre)|4]] et [[6 (nombre)|6]].


== Notes et références ==
== Notes et références ==
{{Traduction/Référence|en|Harshad number|9228930|type=note}}.
{{Traduction/Référence|en|Harshad number|9228930|type=note}}
<references/>
<references/>


==Lien externe==
== Lien externe ==
{{MathWorld|nom_url=HarshadNumber|titre=Harshad number}}
{{MathWorld|nom_url=HarshadNumber|titre=Harshad number}}



Dernière version du 7 juillet 2023 à 21:53

En mathématiques récréatives, un nombre harshad, ou nombre de Niven, est un entier naturel qui est divisible par la somme de ses chiffres dans une base donnée. En base b, tous les nombres de 0 à b et toutes les puissances de b sont des nombres harshad, mais ils suivent ensuite une répartition similaire à celle des nombres premiers.

Historique[modifier | modifier le code]

Ils semblerait que ces nombres aient été considérés pour la première fois par le mathématicien indien D. R. Kaprekar dans un texte de 1955 sous le nom de "multidigital numbers" [1] . L'appellation harshad, qui signifie grande joie en sanskrit, leur a été donnée par la suite. L'appellation « de Niven » est un hommage au mathématicien Ivan Niven qui a publié un article et présenté une conférence en théorie des nombres sur leur sujet en 1977.

.

Nombre harshad en base dix[modifier | modifier le code]

En base dix, les vingt premiers nombres harshad strictement supérieurs à 10 sont (suite A005349 de l'OEIS) :

12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80 et 81.

Les quotients obtenus se trouvent dans la suite OEISA113315 de l'OEIS.

Quels nombres peuvent être des nombres harshad ?[modifier | modifier le code]

Les multiples de 9 à deux chiffres jusqu'à 90 sont des nombres harshad puisque la somme de leurs chiffres est égale à 9, mais 99 n'en est pas un, puisque 9 + 9 = 18 et 99 n'est pas divisible par 18.

Aucun nombre premier p strictement supérieur à 10 n'est harshad. En effet, la somme de ses chiffres est strictement comprise entre 1 et p donc ne peut pas diviser p.

En base dix, les factorielles des nombres entiers inférieurs ou égaux à 431 sont des nombres harshad. Le nombre 432! est la première factorielle à ne pas être un nombre harshad[2]. En voici quelques autres : 444!, 453!, 458!, 474!, 476!, 485!, 489!.

Tout entier > 0 est-il la somme des chiffres d'un nombre harshad ?[modifier | modifier le code]

Dans son article[1], Kaprekar semble admettre cette propriété comme évidente. Elle est en effet exacte, et démontrée par exemple dans[3] en utilisant le théorème d'Euler.

Voici quelques couples est le plus petit harshad ayant pour somme des chiffres :

La suite est la suite A002998 de l'OEIS.

Nombres harshad consécutifs[modifier | modifier le code]

Cooper et Kennedy ont démontré[4],[5] qu'en base dix, il existe 20 entiers consécutifs (dépassant 1044 363 342 786) qui sont tous des nombres harshad, mais qu'il n'en existe pas 21.

Estimation de la densité des nombres harshad[modifier | modifier le code]

Si l'on note le nombre de nombres harshad inférieurs ou égaux à , alors[6]

Cette constante est répertoriée comme suite A086705 de l'OEIS.

Par conséquent,  : les nombres harshad sont de densité asymptotique nulle.

Nombre harshad dans d'autres bases[modifier | modifier le code]

Un nombre harshad en base b est souvent appelé un nombre b-harshad (notation de Grundman 1994).

En base b comme en base dix, on a :

  • tous les entiers de 0 jusqu'à b sont des nombres b-harshad ;
  • aucun nombre premier strictement supérieur à b n'est b-harshad ;
  • il existe une infinité de suites de 2b nombres b-harshad consécutifs, pour b = 2 et pour b = 3 (ces deux résultats ont été prouvés par T. Tony Cai (en) en 1996).
  • Il existe une constante telle que ()[7].

Nombre complètement harshad[modifier | modifier le code]

Un entier qui est un nombre harshad dans toute base est dit complètement harshad (ou complètement de Niven) ; il existe seulement quatre nombres complètement harshad, 1, 2, 4 et 6.

Notes et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Harshad number » (voir la liste des auteurs).
  1. a et b (en) D. R. Kaprekar, « Multidigital Numbers », Scripta Mathematica, vol. 21,‎ , p. 27
  2. (en) Richard Mollin, Number Theory : Proceedings of the First Conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, April 17–27, 1988, Waltre de Gruyter, (présentation en ligne), p=630
  3. Mohammed Aassila, 1000 challenges mathématiques, Algèbre, Ellipses, , p. 110
  4. (en) Curtis Cooper et Robert E. Kennedy, « On consecutive Niven numbers », Fibonacci Quart., vol. 31, no 2,‎ , p. 146-151 (zbMATH 0776.11003, lire en ligne).
  5. (en) Helen G. Grundman, « Sequences of consecutive Niven numbers », Fibonacci Quart., vol. 32,‎ , p. 174-175 (lire en ligne).
  6. (en) Jean-Marie De Koninck, Nicolas Doyon et Imre Katái , « On the counting function for the Niven numbers », Acta Arithmetica, vol. 106, no 3,‎ ,  265-275 (DOI 10.4064/aa106-3-5, lire en ligne)
  7. Nicolas Doyon, « Les fascinants nombres de Niven », Thèse de la faculté des sciences et de génie de l'université Laval, Québec,‎ (lire en ligne)

Lien externe[modifier | modifier le code]

(en) Eric W. Weisstein, « Harshad number », sur MathWorld