Rubidium

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 27 janvier 2018 à 15:38 et modifiée en dernier par 89.202.136.158 (discuter). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

DPD

Production

On le trouve sous forme de traces (Rb2O, RbCl) dans des minerais :[réf. souhaitée]

On en trouve également dans les eaux minérales (6.10−5) et l'eau de mer (2.10−5).

Isotopes

Le rubidium possède 32 isotopes connus, de nombre de masse variant entre 71 et 102, et 12 isomères nucléaires. Seuls deux de ces isotopes sont présents dans la nature, 85Rb (72,2 %), seul isotope stable du rubidium (faisant de lui un élément monoisotopique) et le 87Rb (27,8 %) radioactif. Le rubidium naturel est ainsi suffisamment radioactif pour impressionner une pellicule photographique en trente à soixante jours[1]. On attribue au rubidium une masse atomique standard de 85,4678(3) u.

Composés

Quatre oxydes de rubidium sont connus : Rb2O, Rb2O2, Rb2O3 et Rb2O4[1]. Les trois premiers se forment rapidement en exposant du rudibium à l'air. Le dernier oxyde, Rb2O4, se forme en présence d'un excès d'oxygène.

Le chlorure de rubidium (RbCl) est probablement le composé le plus utilisé du rubidium. Il est utilisé en biochimie en tant que biomarqueur car il remplace facilement le potassium et ne se trouve qu'en très petite quantité dans les organismes vivants. D'autres composés du rubidium communs sont l'hydroxyde de rubidium (RbOH) plus corrosif que les hydroxydes de sodium et de potassium. C'est aussi le composé de départ dans la plupart des synthèses chimiques où du rubidium intervient. Le carbonate de rubidium (RbCO3) est utilisé dans certains verres optiques comme le mélange de sulfate de cuivre et de rubidium (Rb2SO4•CuSO4•6H2O). L'iodure de rubidium et d'argent (RbAg4I5) a la conductivité à température ambiante la plus élevée de tous les cristaux ioniques connus. Cette propriété est exploitée dans des batteries en couches minces et dans d'autres applications[Lesquelles ?][1].

Utilisations

  • Cellules photovoltaïques : il est utilisé en alliage avec le césium.
  • Verre de sécurité trempé : l'ajout de carbonate de rubidium (Rb2CO3) ou d'oxyde de rubidium (Rb2O) permet d'obtenir du verre de sécurité par trempe.
  • Médecine :
    • Examen de la perfusion du myocarde en médecine nucléaire : du fait de sa similitude avec le potassium, l'isotope radioactif émetteur de positrons, le 82Rb, de courte demi-vie (75 secondes), est utilisé comme un indicateur d'ischémie en TEP et utilisation comme générateur de krypton 81 m dans la scintigraphie pulmonaire (Rb81).
    • Fabrication de certains médicaments nooanaleptiques.
  • Physique atomique : L'atome de rubidium (à la fois ses isotopes 85 et 87) est très fréquemment utilisé pour les expériences de physique atomique. En effet, certaines transitions de cet atome correspondent à des longueurs d'onde de laser classiques (780 nm pour la transition 5s-5p notamment), ce qui facilite les expériences. Entre autres, le rubidium peut être utilisé pour la construction d'horloges atomiques en utilisant la transition hyperfine de 87Rb à 6,834 682 611 GHz [2].
    L'emploi de cette transition permet d'obtenir des horloges commerciales compactes et de bas coût, ayant une stabilité relative de fréquence de 5×10−11 (soit une erreur possible de 1 seconde sur un peu plus de 600 ans [3]). Il existe également des horloges appelées « fontaines atomiques », fonctionnant avec du 87Rb refroidi et manipulé par laser, qui atteignent des stabilités relatives de fréquence bien meilleures, comprises entre 10−13 et 10−14 [4].
  • Capteur de gaz pour tube cathodique et tube électronique : on l'utilise comme getter (capteur de gaz) pour parfaire le vide.
  • Il est quelquefois utilisé pour obtenir la couleur violette dans les feux d'artifice.

Notes et références

  1. a b et c (en) William M. Haynes, CRC Handbook of Chemistry and Physics, vol. 97, CRC Press/Taylor and Francis, , 2652 p. (ISBN 1498754287), « The Elements », p. 749 (4-30).
  2. [1]
  3. voir en pdd#Horloge atomique
  4. Observatoire de Paris.

Voir aussi

Sur les autres projets Wikimedia :

Liens externes


  1 2                               3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H     He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *    
  * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux
  Alcalins  
  Alcalino-  
terreux
  Lanthanides     Métaux de  
transition
Métaux
  pauvres  
  Métal-  
loïdes
Non-
  métaux  
Halo-
  gènes  
Gaz
  nobles  
Éléments
  non classés  
Actinides
    Superactinides